Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation
نویسندگان
چکیده
Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.
منابع مشابه
Investigation into the Effects of Nanoparticle Size and Channel Depth on the Thermophysical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation
In this research, an in-house code which uses the molecular dynamics method to study the flow of different nanofluids in the copper nanochannel and computes the thermo-physicals properties has been developed. The flow of nanofluids has been studied from hydro-thermally viewpoint and temperature jump at the wall has been applied. Parametric study to consider the effect of different parametric su...
متن کاملMolecular dynamics simulation of a binary mixture lubricant for use in hard disk interfaces
In Hard Disk Drives (HDD), it is necessary to decrease the Flying Height (FH) between the head and the disk (currently, FH is around 3-5 nm) so as to increase recording densities. Retaining the solid lubricant has become a difficult proposition owing to intermittent contact between the surfaces. ZTMD and Z are used as solid lubricant to lubricate these interfaces. In this paper, the behavior of...
متن کاملMolecular dynamics simulation of a binary mixture lubricant for use in hard disk interfaces
In Hard Disk Drives (HDD), it is necessary to decrease the Flying Height (FH) between the head and the disk (currently, FH is around 3-5 nm) so as to increase recording densities. Retaining the solid lubricant has become a difficult proposition owing to intermittent contact between the surfaces. ZTMD and Z are used as solid lubricant to lubricate these interfaces. In this paper, the behavior of...
متن کاملElastic Properties and Fracture Analysis of Perfect and Boron-doped C2N-h2D Using Molecular Dynamics Simulation
This paper explores the mechanical properties and fracture analysis of C2N-h2D single-layer sheets using classical molecular dynamics (MD) simulations. Simulations are carried out based on the Tersoff potential energy function within Nose-Hoover thermostat algorithm at the constant room temperature in a canonical ensemble. The influences of boron (B) doping on the mechanical properties, ...
متن کاملSize Dependence of the Elastic Properties of Pd Nanowire: Molecular Dynamics Simulation
The mechanical properties including elastic stiffness constants as well as bulk modulus of Palladium (Pd) nanowire were calculated in the constant temperature and pressure (NPT), ensemble by molecular dynamics (MD) simulation technique. The quantum Sutton-Chen (Q-SC) many-body potential was used to calculate the cohesive energy as well as forces experience by every atoms. The temperature and pr...
متن کامل